

A Scanning Probe Investigation of Inter-Granular Corrosion in Sensitised Stainless Steel Nuclear Fuel Cladding

Ronald Clark (Final year PhD.)

Professor Geraint Williams (Swansea University) Dr. Steve Walters (National Nuclear Laboratory)

Hinkley Point B Advanced Gas-cooled Reactor, EDF Energy

M2A EngD Seminar Great Hall, Swansea University Bay Campus 5th April 2016

Ni

24-26

Cr

19-21

AGR Fuel Cladding

- Austenitic (γ -phase) stainless steel (SS) fuel cladding is used in British Advanced Gascooled Reactors (AGR)
- High-nickel, high-chromium, niobium-stabilised alloy specially designed for the AGR programme
- 'Typical' composition of AGR cladding shown below [1]

Mn

0.55-0.85

Si

0.46-0.75

[1] C. Taylor, The Formation of Sensitised Microstructures during the Irradiation of AGR Fuel Cladding, pp 60-73 Symposium on Radiation-Induced Sensitisation of Stainless Steels, 1986

0.025-0.065

Nb

<10 x wt%. C

0.004-0.010

Balance

AGR Fuel Cladding

- Vast majority of fuel is <u>unaffected</u> by radiation during use
- Small proportion ~22 % are potentially affected by radiation, and may have become sensitised [2]
- We can induce sensitisation by heat treatments (thermal sensitisation method)

This represents a challenge, given the relative long storage life of cladding within cooling ponds, pending final geological disposal.

Some estimates envisage durations of 80 years in long-term storage.

[2] Martin Scott Adam. The Characteristics of Failed AGR Fuel. NNL Internal report, NNL (10) 1(8):1–39, 2012.

Thermal Treatment

•

Heat treatment

- 1150 °C 30 minutes
- 600 °C 2 weeks
- SS is sensitised
 - In aqueous environments may be susceptible to Intergranular Corrosion (IGC)

XRD Characterisation

Hematite iron oxide present

Intergranular Corrosion

- IGC is a type of corrosion affecting grain boundaries
- Attack is focussed on Cr-depleted zones
- Example given: Sensitised 310SS exposed to 10 wt% FeCl₃, Crevice sites, 24 Hr

0007

SEM/EDS

Decommissioning Authority

Post corrosion (polarised) SEM analysis of sensitised 800°C, 192 Hr 20-25-Nb tube where pits initiate at NbC inclusions.

C. H. Phuah, "Corrosion of Thermally-Aged Advanced Gas Reactor Fuel Cladding," Imperial College London, 2012.

"Localised corrosion seems to nucleate on NbC interfaces"

C. M. Chan, "Localised Corrosion of AGR Fuel Cladding, 2nd NDA seminar, Manchester, 2013."

differences on the microscale allows for evaluation on the relative nobility

of phases within the SS

Analysis of **Volta potential**

- AFM / SKPFM
 - Atomic Force Microscopy (AFM) is a type of scanning probe microscopy
 - Probe is in the form of a small cantilever which rasters across the surface under interaction of localised forces
- Using feedback from the topography, the probe hovers at a user defined height (50 nm) to conduct Scanning Kelvin Probe-Force Microscopy (SKP-FM) mapping

AFM KPM Cr-carbides 67.8 nm 57.8 mV 0 nm 0 mV o um 5 µm

AFM: Lighter areas proud of matrix KPM: Darker areas represent nobility

AFM - Carbide Site

Not all GBs show high Volta potentials

Authority

AFM - Carbide Site

KPM

28.5 nm

0 nm

Cr carbide appears to show a higher potential wrt matrix 79.6 mV

0 mV

AFM - Carbide Site

KPM

27.3 nm

0 nm

87.8 mV

0 mV

Heavily Cr-depleted area, discrete areas sensitive to IGC

AFM - NbC Site

AFM

KPM

0 nm

NbC acts cathodic with respect to the matrix

DL-EPR Test

- Test for sensitisation
- 0.5 Mol dm⁻³ sulphuric acid + 0.01 Mol dm⁻³ potassium thiocyanate
- Ratio of charge and current are a function of the degree of sensitisation (DOS)
- Both current and charge decrease with polish depth
- → Less sensitised away from surface

	Anodic charge, C	Repassivation charge, C	Anodic max current, mA	Repassivation max current, mA	Ratio (Charge)	Ratio (Current)
Scale	179.2	66.3	117	56	0.37	0.48
22 µm Polish	247.5	50.2	141.1	55.2	0.2	0.39
70 µm Polish	298.4	54.48	149	57	0.18	0.38

Specimen Preparation Technique

- Mount specimen in resin at an oblique angle
- Grind hematite scale away
- This leaves highly sensitised areas to be investigated
- Green area represents area to be imaged
- The dark outer box represents the Hematite oxide which forms after conducting the heat treatment
- Orange sections represent areas in which there is a greater degree of sensitisation, compared to the grey area in the centre

Decommissioning Authority

Nuclear Decommissioning Authority

Time Lapse Microscopy

<mark>c. 175um</mark>

3 Mol dm⁻³ NaCl, OCP, 48hr

c. 400um

Pre/Post Experiment

c. 400um

 Electrochemical cell glass block used with o-ring

- Contact mode imaging used with low (relative) setpoint; 0.36 V - 0.51 V
- Tip velocity 30 µs⁻¹ (0.3 Hz line rate)
- 50 μ m² scans = ~30 mins
- 1 Mol dm⁻³ NaCl

TL-AFM Optical

TL-AFMs at (a) 30, (b) 60, (c) 120, (d) 240 minutes Immersion at open circuit potential in 1 Mol dm-3

Corrosion Product

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

$$Fe^{2+} + 8FeO(OH)$$

$$+ 2e^{-} \rightleftharpoons 3Fe_{3}O_{4} + 4H_{2}O$$

$$O_{4} + 0.75O_{2} + 4.5H_{2}O \rightleftharpoons 9FeO(OH)$$

S. B. Lyon, "Corrosion of Carbon and Low Alloy Steels," Shreir's Corros., 2009.

TL-AFM

0 nm

- Anodes appear as intergranular pits
- Pit covers evident
- Grain boundary swelling
- Corrosion around what appears to be NbC inclusion

TL-AFMs at (a) 30, (b) 60, (c) 120, (d) 240 minutes Immersion at open circuit potential in 1 Mol dm-3

TL-AFM 3D

NATIONAL NUCLEAR LABORATORY

- Each frame = 30 mins
- Corrosion pits but passivate rapidly as pit covers disturbed
- Large amount of corrosion product visible

- RIS simulated by a heat treatment
- NbC still present after solution anneal (SEM/EDS)
- NbC appear noble wrt matrix (SKPFM)
- In-situ IGC successfully imaged (Optical, AFM)
- IGC does not appear to affect NbC (TL-AFM)
- NbC appears to be acting as a cathodic activator (TL-AFM)
- Corrosion initiates at inclusion, and highly sensitised grain boundaries through an <u>intergranular pitting</u> <u>mechanism</u>

- Geraint Williams
- Steve Walters
- Justin Searle
- Simon Dumbill
- May Chan
- MACH1, Swansea University •
- Nuclear Decommissioning • Authority
- National Nuclear Laboratory
- Westinghouse fuels Ltd. lacksquare

Decommissioning Authority

ABORAI

Thank you!!

EXTRA SLIDES

Polarised Time-lapse Microscopy

- 0.01 Mol dm⁻³ NaCl
- SCE reference, Pt gauze counter electrode
- Corrosion follows grain boundaries
- Intergranular-pitting mechanism present
- IGC initiates at surface scratch which is also the location of triple point grain boundary
- NbC inclusions appear to be unaffected (perturbed system)

Decommissioning Authority

Potentiodynamic Trace

250µm

Post TLM - Optical

Nuclear Decommissioning Authority

IG Pitting