Explore the First-class facilities at Swansea University,
a UK top 10 academic centre for advanced materials and manufacturing research.

{"id":1,"title":"Optics Lab 1","default":true,"thumb":"","img":{"src":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/06\/IMG_20201120_134249_00_026-4000x2000.jpg","width":4000},"position":{"yaw":0.4399684463468229722593605401925742626190185546875,"pitch":0.220560668616702315603106399066746234893798828125,"fov":1.4274487578895309614068764858529902994632720947265625},"hotspots":[{"id":1,"type":"text","title":"Perkin Elmer Lambda 9 UV\u2013Visible-NIR Spectrophotometer","position":{"yaw":-2.7691308269945960063296297448687255382537841796875,"pitch":0.0421002604687163994867660221643745899200439453125},"popup":{"titleColor":"#dd3333","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Perkin Elmer Lambda 9 UV\u2013Visible-NIR Spectrophotometer<\/b><br \/>The Lambda 9 Ultraviolet\u2013Visible-Near Infrared spectrophotometer allows the user to measure the absorbance, transmittance and reflectance of both solid and liquid samples with a 150 mm integrating sphere. Reference samples can also be concurrently measured using the dual sampling compartment. The Lambda 9 contains a Deuterium\/Tungsten-halogen light source and can conduct measurements over a wavelength range of 185-3200 nm with a minimum step of 0.1 nm. Measurement scan speeds can be altered from 0.9 to 960 nm per minute with automatic background correction.<\/p>"},{"id":2,"type":"text","title":"Olympus BH-2 Research Microscope","position":{"yaw":-2.4127860573737649474423960782587528228759765625,"pitch":-0.0627354338580090598043170757591724395751953125},"popup":{"titleColor":"#dd3333","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Olympus BH-2 Research Microscope<\/b><br \/>The BH-2 Research Microscope is a compound light microscope which uses lenses and focused light to magnify a sample or material. The BH-2 offers a range of objectives (\u00d74,\u00d710, \u00d720, \u00d740) which are mounted in a revolving nosepiece for easy transfer between magnifications. This microscope can be used across a range of disciplines but is particularly useful for analysing and inspecting the crystallisation of perovskite thin films. Microscopy images can be easily captured from directly above the sample using a computer controlled integrated camera (Canon, EOS 6D DSLR).<\/p>"},{"id":3,"type":"text","title":"Steady-state Photoluminescence (HORIBA Fluoromax-4 Spectrofluorometer)","position":{"yaw":-1.9592080044343873623802210204303264617919921875,"pitch":0.063106424791424586828725296072661876678466796875},"popup":{"titleColor":"#dd3333","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Steady-state Photoluminescence (HORIBA Fluoromax-4 Spectrofluorometer)<\/b><br \/>The HORIBA Fluoromax-4 spectrofluorometer can be employed to measure steady-state photoluminescence of solid and liquid samples. The excitation, emission or both wavelengths can be scanned. The excitation wavelength range is 200-980 nm while the emission range is 200-850 nm.<br \/><br \/><b>Contact<\/b><br \/>Dr Rodrigo Garc\u00eda -\u00a0<a href=\"mailto:r.garciarodriguez@swansea.ac.uk\">r.garciarodriguez@swansea.ac.uk<\/a><\/p>"},{"id":5,"type":"scene","title":"","position":{"yaw":0.511865653928367692060419358313083648681640625,"pitch":0.174861465985582498205985757522284984588623046875},"scene":{"id":"2","position":""},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/PrevScene_Arrow.png","width":"30","height":"30"}}]}
{"id":2,"title":"Optics Lab 2","default":false,"thumb":"","img":{"src":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/06\/IMG_20201120_134215_00_025-4000x2000.jpg","width":4000},"position":{"yaw":0.76770322453003103646551608107984066009521484375,"pitch":0.2041279934054802680520879221148788928985595703125,"fov":1.4274487578895309614068764858529902994632720947265625},"hotspots":[{"id":1,"type":"scene","title":"","position":{"yaw":1.68275818315000957881011345307342708110809326171875,"pitch":0.1691902127451161419458003365434706211090087890625},"scene":{"id":"1","position":""},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/NextScene_Arrow.png","width":"30","height":"30"}},{"id":2,"type":"text","title":"Olympus BX51 Fluorescence Microscope","position":{"yaw":1.416710063212565984258617390878498554229736328125,"pitch":-0.1397123560111115381232593790628015995025634765625},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Olympus BX51 Fluorescence Microscope<\/b><br \/>The BX51 fluorescence microscope can measure the steady-state photoluminescence spectra (from 340 nm to 1000 nm) and images of solid samples. Excitation is provided by a mercury light source allowing excitation at 390 nm, 475 nm, 497 nm and 559 nm. Measurements can be carried in ambient and N2 atmospheres. This setup has been previously used to monitor the degradation of perovskites under illumination through the change of their photoluminescence.<br \/><br \/><b>Contact<\/b><br \/>Dr Emmanuel P\u00e9an -\u00a0<a href=\"mailto:Emmanuel.pean@swansea.ac.uk\">Emmanuel.pean@swansea.ac.uk<\/a><\/p>"},{"id":3,"type":"text","title":"X-Ray Diffraction (Bruker D8 Discover X-Ray Diffractometer)","position":{"yaw":0.247426390862987233276726328767836093902587890625,"pitch":-0.3218973692676474485097060096450150012969970703125},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>X-Ray Diffraction (Bruker D8 Discover X-Ray Diffractometer)<\/b><br \/>The Bruker D8 Discover is an multipurpose X-Ray Diffractometer, with a copper source and a 1D detector, which allows us to carry out standard crystallographic analysis (both as qualitative and quantitative phase analysis), high-resolution XRD, grazing incidence diffraction (in-plane GID), residual stress and texture analysis. In addition to these capabilities we have thermal stage allowing us to run in-situ temperature testing of materials. These capabilities have been used extensively within the university for the characterisation of a wide range of materials looking at everything from new Perovskite solar cells to new aerospace alloys.<br \/><br \/><b>Contact<\/b><br \/>Dr Tom Dunlop -\u00a0<a href=\"mailto:t.o.dunlop@swansea.ac.uk\">t.o.dunlop@swansea.ac.uk<\/a><\/p>"},{"id":4,"type":"text","title":"Raman Microscope","position":{"yaw":-0.768452046797857946103249560110270977020263671875,"pitch":-0.0007336676860578705827720114029943943023681640625},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"text":"<p><b>Raman Microscope<\/b><br \/>The Renishaw inVia Raman microscope can do Raman and PL spectroscopy and mapping at the same sample\/device region. It can also do micro-photocurrent and micro-electroluminescence measurements and mapping. The measurements can be done under air or dry nitrogen, at different temperatures and with different humidity levels, which is very unique. It also has a near infrared detector which allows PL and electroluminescence measurements up to 1.6 micro-meter. This equipment has been employed to study perovskite solar cells, organic solar cells, quantum dot solar cells, other kind of solar cells, carbon-based materials and organic materials.<br \/><br \/><b>Contact<\/b><br \/>Dr Chung Tsoi -\u00a0<a href=\"mailto:w.c.tsoi@swansea.ac.uk\">w.c.tsoi@swansea.ac.uk<\/a><\/p>","icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"}},{"id":5,"type":"scene","title":"","position":{"yaw":2.81417332193516589455839493894018232822418212890625,"pitch":0.183309008167579889914122759364545345306396484375},"scene":{"id":"3","position":""},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/PrevScene_Arrow.png","width":"30","height":"30"},"text":"<p><b>Raman Microscope<\/b><br \/>The Renishaw inVia Raman microscope can do Raman and PL spectroscopy and mapping at the same sample\/device region. It can also do micro-photocurrent and micro-electroluminescence measurements and mapping. The measurements can be done under air or dry nitrogen, at different temperatures and with different humidity levels, which is very unique. It also has a near infrared detector which allows PL and electroluminescence measurements up to 1.6 micro-meter. This equipment has been employed to study perovskite solar cells, organic solar cells, quantum dot solar cells, other kind of solar cells, carbon-based materials and organic materials.<br \/><br \/><b>Contact<\/b><br \/>Dr Chung Tsoi -\u00a0<a href=\"mailto:w.c.tsoi@swansea.ac.uk\">w.c.tsoi@swansea.ac.uk<\/a><\/p>"},{"id":6,"type":"scene","title":"","position":{"yaw":-1.910691060509638106168495141901075839996337890625,"pitch":0.088195998028201216811794438399374485015869140625},"scene":{"id":"4","position":""},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/PrevScene_Arrow.png","width":"30","height":"30"}}]}
{"id":3,"title":"Optics Lab 3","default":false,"thumb":"","img":{"src":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/06\/IMG_20201120_134053_00_023-4000x2000.jpg","width":4000},"position":{"yaw":-0.416947188057857687226714915595948696136474609375,"pitch":0.024862996438717033242937759496271610260009765625,"fov":1.4274487578895309614068764858529902994632720947265625},"hotspots":[{"id":1,"type":"text","title":"Time-corelated single photon counting (TCSPC, Edinburgh Instruments Lifespec 2)","position":{"yaw":-0.058355441840884481052853516303002834320068359375,"pitch":0.125231442552031779769095010124146938323974609375},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Time-corelated single photon counting (TCSPC, Edinburgh Instruments Lifespec 2)<\/b><br \/>The Lifespec 2 allows to measure time-resolved photoluminescence of solid and liquid samples. It is equipped with 2 picosecond EPL series lasers with excitation wavelength at 405 and 635 nm. The visible detector allows to measure PL between 200 and 850 nm and a liquid nitrogen cooled NIR detector can be used for measurements up to 1400 nm. This instrument has been modified to simplify measurements of perovskite samples through the automatization of fluence-dependent measurements.<br \/><br \/><b>Contact<\/b><br \/>Dr Emmanuel P\u00e9an -\u00a0<a href=\"mailto:Emmanuel.pean@swansea.ac.uk\">Emmanuel.pean@swansea.ac.uk<\/a><\/p>"},{"id":2,"type":"text","title":"Steady-state Photoluminescence (Edinburgh Instruments FS5 spectrofluorometer)","position":{"yaw":-1.9634593113256588736703633912838995456695556640625,"pitch":-0.0354431206377707752608330338262021541595458984375},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Steady-state Photoluminescence (Edinburgh Instruments FS5 spectrofluorometer)<\/b><br \/>The FS5 fluorometer allows to measure steady-state photoluminescence of solid and liquid samples between 200-870 nm with excitation wavelengths between 230 nm and 1000 nm. Equipped with an integrating sphere, the FS5 can also measure photoluminescence quantum yield and absorptance of solutions and films.<br \/><br \/><b>Contact<\/b><br \/>Dr Rodrigo Garc\u00eda -\u00a0<a href=\"mailto:r.garciarodriguez@swansea.ac.uk\">r.garciarodriguez@swansea.ac.uk<\/a><br \/>Dr Emmanuel P\u00e9an -\u00a0<a href=\"mailto:Emmanuel.pean@swansea.ac.uk\">Emmanuel.pean@swansea.ac.uk<\/a><\/p>"},{"id":3,"type":"text","title":"Single Point Kelvin Probe System (KP020, KP Technology Ltd.)","position":{"yaw":3.00449488445131773772800443111918866634368896484375,"pitch":-0.0855451957514450356256929808296263217926025390625},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Single Point Kelvin Probe System (KP020, KP Technology Ltd.)<\/b><br \/>The Single Point Kelvin Probe System allows to evaluate the work function and surface potential between a conductive specimen and a vibrating tip. It has a resolution of 1-3 meV, and the measurements can be done under illumination to evaluate the surface photovoltage of the sample. This equipment can be employed with organic and inorganic semiconductors, metals and metal alloys, thin films and surface oxides, solar cells and organic photovoltaics.<br \/><br \/><b>Contact<\/b><br \/>Dr Rodrigo Garc\u00eda -\u00a0<a href=\"mailto:r.garciarodriguez@swansea.ac.uk\">r.garciarodriguez@swansea.ac.uk<\/a><\/p>"},{"id":4,"type":"scene","title":"","position":{"yaw":1.81104497930462837729237435269169509410858154296875,"pitch":0.346533179764524135180181474424898624420166015625},"scene":{"id":"2","position":""},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/NextScene_Arrow.png","width":"30","height":"30"}}]}
{"id":4,"title":"Optics Lab 4","default":false,"thumb":"","img":{"src":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/06\/IMG_20201120_134144_00_024-4000x2000.jpg","width":4000},"position":{"yaw":0.64866762334535366107957088388502597808837890625,"pitch":0.420569774107601546120349667035043239593505859375,"fov":1.4274487578895309614068764858529902994632720947265625},"hotspots":[{"id":1,"type":"scene","title":"","position":{"yaw":1.40230323918836319307956728152930736541748046875,"pitch":0.3597359281928884655599176767282187938690185546875},"scene":{"id":"2","position":""},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/NextScene_Arrow.png","width":"30","height":"30"}},{"id":2,"type":"text","title":"Transient Absorption Spectroscopy (LKS80 Laser Flash Photolysis Spectrometer)","position":{"yaw":0.52127343650850122003248543478548526763916015625,"pitch":0.2802032153150406657005078159272670745849609375},"popup":{"titleColor":"#000000","titleBgColor":"#ffffff"},"icon":{"url":"https:\/\/materials-academy.co.uk\/wp-content\/uploads\/2021\/04\/Info_Spot.png","width":"30","height":"30"},"text":"<p><b>Transient Absorption Spectroscopy (LKS80 Laser Flash Photolysis Spectrometer)<\/b><br \/>With the LKS80 Laser Flash Photolysis Spectrometer it is possible to study short-lived chemical species, charge-transfer complexes and energy transfer phenomena. It allows to produce transient species such as radicals, excited states or ions with concentrations high enough to allow characterisation of spectral properties both in solid and liquid samples. Employing a tuneable Nd:YAG-Laser system (EKSPLA) we obtain pump wavelength of 355 nm with a time resolution from 10 ns to 1 s, and the detectors allow us to measure samples in a range between 200-850 nm.<br \/><br \/><b>Contact<\/b><br \/>Dr Matthew Davies -\u00a0<a href=\"mailto:M.L.davies@swansea.ac.uk\">M.L.davies@swansea.ac.uk<\/a><\/p>"}]}
{"primaryColor":"#ffffff","secondaryColor":"#dd3333","autostart":0,"move":0,"zoom":0,"menu":0,"hideMenu":0,"hdesktop":"1-2","htablet":"1-2","hmobile":"1-1","zoomScroll":0,"fullImages":0,"gyro":0}

Materials and Manufacturing Academy (M2A) provides industry led postgraduate research training based at Swansea University's new Bay Campus. M2A is part funded by the European Social Fund through the Welsh Government.